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 In order to set the requirements on an ion accelerator for heating a target to Warm
Dense Matter conditions, a number of accelerator and target parameters must be
understood  Scaling relations between the ion energy loss rate (dE/dX), and the ion
energy and mass; at least a rough understanding of the equation of state for the matter
that is to be studied, and an understanding of the relation between the achievable pulse
duration and focal spot on accelerator and beam parameters are needed. In this note, we
try to connect some of these basic parameters to help search the extensive parameter
space (including ion mass, ion energy, total charge in beam pulse, beam emittance, target
thickness and density, to name a few of the parameters) and obtain a sensible set of
accelerator and beam parameters which can achieve interesting Warm Dense Matter
conditions.

We first examine dE/dX, where E is the ion energy and X ≡ ∫ ρ dz is the integrated
range of the ion. This quantity has been displayed graphically for a number of different
ions, in ref [1], and scaling to other target materials is also given.

For heating solid aluminum (at room temperature) over a range of ion mass from 4
amu (Helium) to 126 amu (Iodine), the energy loss at the peak of the dE/dX curve
(dE/dXmax) may be parameterized approximately as:

(1/Z2)dE/dXmax ≈ 1.09 (MeVcm2/mg) A-0.82 (1)

where Z and A are the ion nuclear charge and atomic mass, respectively. Expressing
dE/dXmax as a function of A only yields:

dE/dXmax ≈ 0.35 (MeVcm2/mg) A1.07. (2)

Thus, the peak energy loss rate increases (nearly linearly) with ion atomic mass.
Similarly, the energy at the peak increases with ion nearly quadratically with A:

E (at dE/dXmax) ≈ 0.052 MeV A1.803 . (3)



Figure 1. Temperature variations in an ion-beam heated foil can be minimized by choosing an ion
and energy such that the peak in dE/dX occurs in the center of the foil (ref. [2]).

Target uniformity is another important consideration. In ref. [2] it was pointed out
that target temperature uniformity can be maximized in simple planar targets if the
particle energy reaches the maximum in the energy loss rate dE/dX when the particle has
reached the center of the foil (see figure 1).  For any specified fractional deviation in
target temperature (assuming the energy is deposited in a time short so that no
hydrodynamic, radiative, or other cooling has occurred) one can determine the energy at
which the ion must enter and exit the foil. From the dE/dX curves of ref. [1] we find that
for the entrance and exit energies to have a 5% lower energy loss rate relative to the peak
in dE/dX, ΔΕ/Ε ≈1.2, where ΔE is the difference in ion energy between entering  and
exiting the foil, and E is the energy at which  dE/dX is maximum. Note the large (>1)
fractional range in energy relative to peak energy is expected for a broad peak in a log-
log representation.  The spatial width of the foil Z, for a 5% temperature non-uniformity
is then given by:

Z= ΔE/(ρ dE/dX) ≈ 0.77µ   A0.733(ρal/ρ) (4)
Here we have used ρal=2.7 g/cm3 to convert the range into a physical distance. So by

using materials of low density such as metallic foams, for example, the width of the foil
can be large, which can be advantageous as will be shown.  The total energy density U,
calculated from the total energy deposited over the course of the pulse and neglecting
losses is thus:

U = NionsE/πr2Z = 3.7 x 109 (J/m3)(Nions/1012)(1 mm/r)2 (ρ/ρal) A1.07  (5)
Here Nions is the number of ions in the pulse, and r is the equivalent radius of the focal
spot, defined such that the beam is assumed to have uniform density within r, and has
zero intensity outside of r.  So to achieve high energy density, large particle number,
small spot radius, and higher target densities must be attained. In addition, to realize the



energy density given by eq. (5), the hydrodynamic expansion timescale Z/cs must be
much shorter than the pulse duration Δt.

Hydrodynamic disassembly time:
The sound speed cs is given by cs = (γP/ρ)1/2= (γ[γ-1]U/ρ)1/2. Here γ is the ratio of

specific heats, P is the pressure and ρ is the mass density. For estimating purposes, we
take γ to be 5/3, although more refined estimates below will relax this assumption. For a
“shock tube,” that at a finite longitudinal distance z, has a discontinuous drop to zero
pressure at some initial time, an analytical solution exists (ref. [3]; see fig.2) in which a
rarefaction wave propagates inward at speed cs, and a plasma front flows outward at 2 cs.
For the case of isochoric heating, when the pulse duration Δt << Δz/ cs, where Δz is the
width of the foil, the dynamics will be the same as the shock tube solution. For times Δt
<~ Δz/ cs , we expect that, since the sound speed is increasing over the course of the
pulse, the position of the rarefaction wave zr will be somewhat less than would be
expected if calculated on the basis of the final heated plasma: 
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Here 
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, where T* is the temperature achieved at the end

of the ion pulse; we also assume cs ∝ T1/2 .

Figure 2. Schematic representation of rarefaction wave propagating inward at sound speed cs, and
plasma front moving outward at speed cs. As material is heated over course of pulse cs increases.
The original density distribution of the foil is indicated by dotted line, and location of the
rarefaction wave by zr.

We envision isochorically heating a target foil, and taking measurements with
various optical or beam diagnostics.  If our diagnostic is unable to resolve a volume
smaller than the volume heated by the ion beam, and if we want to distinguish equations
of state with 5% accuracy, then the sample volume cannot consist mostly of blow off
material (i.e. material that is part of the rarefaction wave). If we demand that the blow off
material is less than 5% of the total mass, that implies  2zr/Δz < 0.05, or

Δt < 3Δz/(80 cs*). (7)

If on the other hand, the diagnostic has resolution zmin such that it can sample a fraction of
the target (zmin < Δz), then, as long as the central part of the target has not been



"contaminated" by the rarefaction wave, useful data can be obtained by just observing the
central (heated) part of the foil. In this latter case, the pulse duration must satisfy

Δt < 3(Δz - Δzmin)/(4 cs*). (8)
If  Δz >> Δzmin, this can be a significantly longer time, but in any case, the longer of the
two timescales above (eq. 7 and eq. 8) should be taken. For our examples to be discussed
below, we have used Δzmin to be 40 µ, which may be achievable using a K-α diagnostic
generated by a short pulse laser.

In order to calculate more accurately the sound speed, one needs to understand the
response of the target to the energy deposited by the ion beam. In particular, the pressure
and temperature will depend on the ionization state of the plasma. For our estimating
purposes, we use a model developed by Zeldovich and Raizer and summarized in ref. [4].
The basic idea of the model is to calculate the average ionization state Z* by
approximately solving the Saha equation and accounting for the ionization energy of each
ion in the energy density U (where U = (3/2)nkT + Q(Z*)ρ/Amh), and to include
contributions to the pressure P (where P = nkT = kT (Z* + 1) ρ/Amh) from the electrons
and partially ionized target atoms. Here Q(Z*) = Σi=1

Z*  Ii, where Ii is the (known)
ionization energy of the ith level of the target material, n is the total number density of
ions, atoms, and electrons, and ρ is the mass density.  Other more detailed equation of
state models, including degenerate effects, correlation effects, and more exact treatment
of the Saha equation, may have an impact on various transport and thermodynamic
properties. These details are not to be minimized; after all that is why there is an
experimental interest in this regime. For our purposes, however, the Zelodovich-Raizer
equation of state allows approximate calculation of Z* (see fig. 9), T, and the coupling
parameter Γii.

A second model for equation of state uses the Thomas Fermi model for
calculating the distribution of electrons within an atom (see ref. [5], and reference therein
for a description). Results of both models for the mean ionization state Z* are displayed in
Figure 3.

Figure 3. Calculation of ionization state, as a function of temperature for three different densities



(0.01:red, 0.10: blue, 1.00:violet) time solid density Al, using Zeldovich-Raizer equation of
state(dashed) or Thomas Fermi model (solid). The x,o, and + would correspond to the conditions
of reached in accelerator described by the central column of each of the 1%, 10%, and 100% solid
density cases in Table 1.

Examples of accelerator requirements:

Using the model described in the previous section for ion beam stopping, the time
scale for hydrodynamic expansion and the equation of state we are able to make estimates
of the required beam parameters for exploring the Warm Dense Matter regime.  Tables 1
and 2 give examples of requirements for two different ion energy and mass, Neon+1

(A=20.17) at foil entrance energy (Emax) of 19 MeV, and Chlorine+1 (A=35.453) at
Emax=52.4 MeV. The energy at the center of the foil (Ecenter) and the energy at the exit of
the foil (Emin) are listed in the captions to the tables.  For each ion, three different mass
densities of Aluminum target are given: Solid density (2.7 g/cm3) and 10% and 1% of
solid, which can be produced by making an aluminum "foam."  In turn for each target
density, three target temperatures are shown.  Both tables are based on a minimum
diagnosable length scale Zmin of 40 µ. It is clear from the tables that solid density,
although resulting in the highest energy density, requires vary short pulse durations,
because the foil width is smaller than Zmin and so only a small rarefaction wave
propagation distance is allowed. But for the 1% and 10% cases, the foil is larger than Zmin,
so that the rarefaction wave propagation distance can be 10's or 100's of microns, with
concomitantly longer pulse duration times. In all cases the plasma temperature is in the
few to tens of eV, and the required number of particles is in the order of 1012 to 1013

particles, for equivalent focal spot radii of 1 mm.

Table 1. Neon beam: Z=10, A=20.17, Emin=7.7 MeV, Ecenter=12.1 MeV, Emax=20.1 MeV,
and Δzmin=40 µ



Table 2. Chlorine beam: Z=17, A=35.453, Emin=21.1 MeV, Ecenter=48.8 MeV, Emax=68.5
MeV, and Δzmin=40 µ.

Tabel 3. Parameters for five different ion beam species such the central temperature of a
10% solid density Aluminum foil reaches 10 eV,

Tolerance on Velocity Spread:

Several different types of accelerators are being considered to produce the very
short (<~ ns) pulses required for HEDP studies. But one common thread in all of the
approaches, has been the need to invoke neutralized drift compression, to overcome the
limit imposed by space-charge.  Neutralized drift compression is a departure from the
more traditional approach of non-neutral drift compression that allows the longitudinal
space charge to cause the beam velocity to "stagnate," thereby removing the velocity tilt,
just as the beam is passing through the final focusing magnets, thus minimizing any
potential chromatic aberrations that arise in the final focusing process.  Using neutralized
drift compressions achieves shorter pulses, but the various longitudinal parts of the beam
that have different longitudinal velocities maintain those velocities through to the end,
including the final focus.  So, not only do the final focusing optics have to be tolerant of
velocity spread, but target heating uniformity must be maintained as different parts of the
beam (with different longitudinal velocities) will have different stopping powers (dE/dX)
and which in principal lead to a temperature variation larger than that of a single particle
near the Bragg peak.

To investigate the effect of velocity spread we integrated the dE/dX curves of ref.
[1].  As an example we investigated the evolution of a Ne ion beam propagating through
4.8 µ foil of aluminum (see figs. 4 and 5). To represent the effect of a velocity spread we
chose a number of different ion energies and averaged the energy loss rate at each point



in the foil (corresponding to a energy distribution that is uniform between a lower and
upper energy cutoff), and then calculated the maximum change in energy loss rate and
normalized to the average energy loss rate in the foil (= ΔT/T). In the 4.8 µ foil case, for
Neon with energy centered about 20 MeV and with zero energy spread, there was a 5.4%
fractional spread in dE/dX through the foil. (So ΔT/T=0.054 for this example, and is
defined as the difference between the maximum and minimum energy loss rate divided
by the average energy loss rate).   As we increased the energy spread of the He beam, the
calculated ΔT/T did not significantly increase until the velocity spread
Δvspread/v=(1/2)ΔEspread/E is of order the fractional energy change of a single particle
through the foil ΔEsingle_particle/E.   Here ΔEspread is the half width of the uniform particle
distribution in energy and Δvspread is the corresponding velocity spread.  The general
conclusion, would appear to be that if ΔEspread <~ ΔEsingle_particle then there is no appreciable
degradation of the uniformity.  On the other hand, there does not appear to be a
significant advantage in a small but finite energy spread. Both statements need to be
verified over a broad range of foil thickness and particle energy spreads, and the
dependence on particle distribution function needs to be explored. If confirmed the
temperature uniformity variations in the target may not be the most severe limitation to
the allowed energy spread from velocity tilt, but more likely final optics considerations.

Figure 4. Energy vs. distance and dE/dX vs distance, for a  Ne ion propagating in cold aluminum,
for five different energies ranging from 14 to 26 MeV.  The black curve in the right hand figure is
the average of the five colored curves and represents the total average energy loss rate for an ion
distribution function that is uniform in energy.



Figure 5. Temperature uniformity vs. velocity spread, for a Ne beam with central energy 20 MeV,
propagating through a 4.8 µ cold aluminum foil.

Not only do HEDP experiments require uniform deposition but they also require
high intensity, which means both short pulse and small beam radius. We may make
simple estimates for the contribution to the spot size from chromatic effects (i.e. for the
effects of a velocity spread) from a number of optical systems. For example, for a "thick"
solenoidal lens in which a beam enters a solenoid with zero convergence angle and
focuses to a spot within the solenoid, it can be shown to have a radius from emittance and
chromatic effects rspot to be approximately:

r2
spot ≈ (π r0 /2)2 (Δvspread/v)2 + (2εf/πr0)2  (9)

where r0 is the radius of the beam at the entrance to the solenoid, f is the focal length, i.e.,
the distance from the entrance of the solenoid to the focal spot, and ε is the beam
emittance.  The quantity rspot is minimum when r0

2=(2/π)εf /(Δvspread/v) and has the value

rspot
2 =2εf Δvspread/v (10)

At minimum pulse duration the velocity tilt is converted to a velocity spread, so
achieving high beam intensity will limit the velocity tilt. A system which is less sensitive
to velocity tilt has also been proposed, such as the adiabatic plasma lens, but the dynamic
range of these types of lens are generally limited to a reduction in spot size to a factor of
around 2 or less, so these will most likely be used as a final "after burner" optic, with the
bulk of the focusing being carried out by a conventional, solenoid optic, for which
equations (9) and (10) provide limits.

It is apparent from equation (10) that a large velocity spread has deleterious
effects in the focusing. Thus a larger velocity tilt will allow a shorter pulse but will yield
a large overall spot. But if the longitudinal emittance is  small, a larger velocity tilt is not
needed to achieve the short pulse duration. Thus one is  in obtaining a small spot there are
tradeoffs that can be made between longitudinal and transverse emittance, which can be
made if one is easier to obtain than the other. This may be made more explicit by



expressing equation (10) in terms of the transverse and longitudinal normalized
emittances:
                                                   rspot

2 =εnxεnzf /(

€ 

3β 3cτ )                                               (11)
Here εnx is the normalized x emittance (= 4β(〈x2〉〈x'2〉-〈xx'〉2)1/2) and εnz is the normalized z
(longitudinal) emittance (= 2√3β(〈z2〉〈z'2〉-〈zz'〉2)1/2), f is the final focal length, β is the final
velocity in units of c and τ is the final pulse duration.  Prime indicates derivative with
respect to the path length s, and non-relativistic velocities are assumed. Table 4 lists a
number of parameters for possible 23 MeV Na beams, with final pulse duration τ of 1 ns,
total charge of 0.1 mC,  and final spot radius of 1 mm. The table illustrates some of the
tradeoffs that can be made involving pulse duration before drift compression, velocity tilt
and requirement on longitudinal and transverse emittance. It is apparent (and obvious)
that the larger compression required during final neutralized drift compression the more
constrained the normalized emittance will be.

Table 4. Comparison of requirements on a 23 MeV Na beam with final pulse duration of
1 ns, and final focal spot radius of 1 mm, assuming neutralized drift compression and
solenoidal final focus, satisfying equations (9) and (11). The injected beam has energy 1
MeV and pulse duration 171 ns.
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